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The zeroth order excitonic wave-function built previously is considered as a zeroth order wave- 
function for the excited state. The interaction with other singly, doubly and triply excited determinants 
is taken into account through a 2 "d order perturbation process. A proper definition of the unperturbed 
Hamiltonian allows cancellation between the ground state and excited state series, and thus the direct 
calculation of transition energies. The complete localization of MO's in the CNDO approximation 
makes the calculation very rapid. The method is applied to the series of linear polyenes 
H-(CH=CH)~-H(2 < N < 7) with the CNDO/2 parametrization. The evolution of the excitonic 
wave-function is analyzed. 

Die zuvor konstruierte excitonische Wellenfunktion nullter Ordnung wird als Wellenfunktion 
nullter Ordnung Rir den angeregten Zustand verwendet. Die Wechselwirkung mit anderen einfach, 
doppelt und dreifach angeregten Determinanten wird mittels StSrungsrechnung 2. Ordnung be- 
riicksichtigt. Bei geeigneter Wahl des ungestSrten Hamiltonoperators hebt sich der Grundzustand 
bei Berechnung der lJbergangsenergien heraus, was auf ihre direkte Bestimmung hinausl~iuft. Die 
vollstiindige Lokalisierung der MO's hat zur Folge, dab bei Anwendung des CNDO-Verfahrens die 
Berechnung sebr schnell vonstatten geht. Die Methode wird auf die Reihe linearer Polyene des Typs 
H-(CH=CH)N-H(2__<N<7 ) angewendet (CNDO/2-Parametrisierung). Die excitonische Wellen- 
funktion wird beziiglich der Zellenpopulation und deren Schwankungen untersucht. 

On prend la fonction d'onde excitonique d6j/t construite comme fonction d'onde d'ordre z6ro 
pour l'6tat excit6. L'interaction avec les autres d6terminants monoexcit6s, les d6terminants di- et 
tri-excit6s est prise en consid6ration par une perturbation au 26 ordre. Un choix judicieux de l'Ha- 
miltonien non perturb6 met en 6vidence d'importantes suppressions entre les s6ries de l'6tat excit6 
et de l'6tat fondamental, et par cons6quent le calcul direct des 6nergies de transition. Malgr6 le caract6re 
multiconfigurationel de tP0, la localization complete des OM rend le calcul extr6mement rapide dans 
les hypoth6ses CNDO. La m6thode est appliqu6e/~ la s6rie des poly6nes lin~aires H- (CH=CH)~-H 
(N = 2 ~ 7). Analyse de la fonction d'onde excitonique en terme de populations de loge et de leur 
fluctuations. 

T h e  use of  fully loca l i zed  M o l e c u l a r  O r b i t a l s  ( M O ' s )  for the  g r o u n d  s ta te  

ene rgy  c a l c u l a t i o n  a p p e a r e d  to be very  in t e re s t ing  f r o m  b o t h  c o m p u t a t i o n a l  

a n d  i n t e rp re t a t i ve  p o i n t s  of  v iew [1].  T h e  P C I L O  ( P e r t u r b a t i v e  C o n f i g u r a t i o n  

I n t e r a c t i o n  f r o m  L o c a l i z e d  Orb i ta l s )  m e t h o d  [2] bui l t  a l o n g  this  s cheme  has  
been  wide ly  used  for c o n f o r m a t i o n a l  s tudies.  Th i s  m e t h o d ,  at  least  w i th  the  

C N D O  [3]  a p p r o x i m a t i o n s  on  the  a t o m i c  in tegra ls ,  is m u c h  m o r e  r ap id  t h a n  the  
usua l  v a r i a t i o n a l  m e t h o d s .  T h e  use of  l oca l i zed  M O ' s  for the  exc i ted  states repre -  
sen ta t ions  genera l ly  r equ i r e s  m u l t i c o n f i g u r a t i o n a l  w a v e  funct ions .  T h e  well-  

k n o w n  exc i ton ic  m e t h o d s  [4] use fully loca l i zed  M O ' s  a n d  r ep resen t  the  exc i ted  



60 J. Langlet and J. P. Malrieu : 

state as a linear combination of local single excitations. The linear combination 
results from the solution of the Configuration Interaction (CI) problem between 
the singly excited determinants. In the preceeding paper of this series [5], the 
construction of such wave-functions have been analyzed for conjugated systems, 
and it has been proved that the nn* transitions might,be treated as linear combi- 
nations of nn* local single excitations, the ( a -  n) coupling which mixes the n~* 
and o-o-* excitations being treated by perturbational methods with a sufficient 
accuracy. 

But such excitonic wave functions may only be considered as zeroth-order 
wave-functions. When one treats the ground state problem one takes into account 
all the singly and doubly excited determinants which interact with the zeroth- 
order ground state determinant, and which introduce respectively delocalization 
and correlation effects [2]. The linear combination of singly excited determinants 
will interact with the ground state determinant, and with numerous doubly and 
triply excited determinants. In order to calculate a reasonable transition energy, 
one must take into account in a coherent way both the interactions with the ground 
state determinant and with the excited state zeroth order wave-function. The 
present paper proposes a method which calculates second order corrected 
transition energies; the second order energy corrections are calculated from both 
the fully localized single determinant for the ground state and the excitonic 
multiconfigurational wave-function for the excited state. A convenient definition 
of the unperturbed Hamiltonian H ~ allows important cancellations between 
the two series. Due to these cancellations, the computational time of the transition 
energy is analogous to that of the ground state energy calculations, despite the 
multiconfigurational character of the excited state and the very great number of 
doubly and triply excited configurations included in the process. 

1. Method 

The zeroth order wave-function ~Um0 is a linear combination of certain number 
of determinants, defining a subspace S 

~o= Z %r  (1) 

For the nn* transitions, the states ~i will be the singly excited nrc* determinants 

~[10= E E Cmij*(D " (2) 
j i 

The coefficients Cmij* are obtained from the diagonalization of the CI matrix 
restricted to the S subspace, i.e. the ~ excitonic matrix. Therefore the interaction 
matrix elements between the zeroth wave functions of two nn* excited states 
7 ~~ and 7 ~~ are zero. ( ku~ 7 s~ = 0. 

The CI matrix restricted to subspace S is diagonal in the basis of the function kg ~ 
Now one performs a change of the basis set of the CI in the subspace S; the 

determinants outside of S are kept unchanged. Therefore the new basis is now 
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Fig. 1. Structure of the interactions between the excitonic wave-functions T ~ with the various functions 
of the new basis set of the CI matrix. r is the ground state single determinant 

i) the multiconfigurational wave functions T ~ in the subspace S, 
ii) the single determinants q~j outside of So. 

Since the singly excited determinants ~b belonging to S interact with other 

singly excited determinants outside of S and some doubly and triply excited 
determinants, the states T ~ also interact with these determinants, as illustrated 
in Fig. 1. 

We shall take into account through a second order perturbation process the 
interactions of the excitonic wave-function tpo for the state m with the ground 
state determinant on one hand and with the various excited determinants outside 
of S on the other hand. 

In the second order energy, the summation is restricted to the determinants 

outside of S: ( To I n 1~I>2 
2 

~m ~ ~' ,  0 I r  Era__ EO (3) 

where E ~ and E ~ are the zeroth order energies associated with the state m and the 
determinant ~ H o o o o T,~ =Em T,~ (4) 

H~176 for I ~ S .  (5) 

H ~ will be defined by these relations, and by a proper choice of E ~ and E ~ 
E ~ will be taken as the mean value of the exact Hamiltonian for the state ~ , ,  

according the Epstein-Nesbet partition of the total Hamiltonian [6]. 

E~ = (~,J  H I ~ > .  (6) 

E ~ will not be taken according to the same definition which would lead to absurd 
dependencies of the transitions energies to the number of particles [7]. We use 
a "barycentric" definition of H ~ for the state m 

0 Era= ~, c~<~,lul~> (7) 
I e S  

E ~ differs from the eigenvalue E" of the excitonic matrix. If Ps is the projector on 
the subspace S, 

p s n p  ~ o , o ~J~n = Em Itlu ( 8 )  

Em= <T,.IHIT,,> = ~ ~ c,.,Cmj<4,,IHIqb>. (9) 
I J 
eS 
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As will be shown further on, this definition of E ~ will lead to important cancel- 
lations in the calculation of the transition energy. 

The second order energy may be developed. 

2 2 (~)J]HIq)1) 2 
o o  Cmj 

1r J~S E m -  El (1o) 

+ E E EcmjcmK o 
fes s*Ic Era- E~ 

eS 

In this expression, the first terms will be called diagonal terms, and the second 
ones will be called cross-terms. Since one is supposed to work on a given excited 
state, the subscript m will be omitted here after. 

Among the configurations I outside of S, one finds first the ground state 
configuration, which leads to the correction 

Fii*Fkl* 
a= E E E E 2c,,*cu* E---E~ (11) 

i j k l 
J~ 

where in Fij,--(i IF [j*), F is the Fock operator. This Fock operator reduces to 
its monoelectric part if i and j are different when the MO's are fully localized in 
the CNDO hypotheses. 

The subspace outside of S also includes singly excited configurations. 

(;*) If S is built of singly excited configurations, the singly excited con- 

figurations outside of S belong to two groups; 

- the singly excited configurations, which reduce to the "polarization" 
fit 

- -(;*)configurations in the PCILO-CNDO hypotheses. 
\ - -  / 

(:*) (;) - the and configurations, which only play a role in non-planar 

systems. The second order effect of the singly-excited configurations is given in 
Appendix. (:*) According to the Slater's rules, a singly excited configuration ~ only 

interacts with the doubly excited determinants which involve either i or j* in 

their excitation process, i.e. q~ i or ~b . But in the CNDO hypotheses, 

the full localization implies 

t*=  j* to get a non zero ( ~  t:*) H ( b  (:* qp*)) matrix element, 

o r  

t__i to get a non  ero (O (i Oil   ))matr eleloent 



PCILO Method for Excited States 63 

The doubly excited determinants which belong to the summation over I in Eq. (3), 

actually involve one excitation and one excitation, where p and q may 

be o- or rc MO's. If n~ is the number of ~z bonds, and n the total number of bonds, 
the number of doubly excited determinants involved in the 2nd order correction 

2 /~2 of the excited state is proportional to n~ x 

The triply excited determinants which interact with a given ~b singly 

t,. q. ;.) excited determinant may be written as ~b . according to the Slater's rules. 
p 

But the C NDO hypotheses and the full localization of the MO's implie 

p = q  and r = s  (or p = s and r =  q) 
since 

{~ ( j ;  q; s:) H cI)(i*)) : (pr,q's* ) - (pr ) s*q*)  . 

Once more the number of triply excited determinants interacting with the zeroth 
2 n2. order description of the excited state is proportional to n~ x 

One may already notice at this stage the benefit of the localized model; 
in a delocalized framework, there would be n 4 triply excited configurations 

tb interacting with a given singly excited determinant ~ , even in 
P 

the CNDO hypotheses. This feature already balance the disadvantage of having 
a multiconfigurational zeroth order wave-function for the excited state. 

2. Cancellations between the Ground State 
and Excited States 2 nd Order Corrections 

One knows that if one uses the same set of MO's for the ground state the 
excited state, and if the excited state zeroth order wave-function is a single con- 
figuration, important cancellations occur between the perturbation series of the 
ground state and of the excited state [8] ; for instance in the second order energies, 
the effect of most of the triply excited determinants upon the excited configuration 
are equal to the effect of most of the doubly excited determinants upon the ground 
state determinant. 

We shall demonstrate that this phenomenon, which may be called "cancel- 
lation of common diagrams in transition energies", also occurs in the excitonic 
treatment as long as a correct definition of N ~ has been chosen. 

Let us consider for instance the effect of the delocalization single excitations 
p ~  q* (p ./= q) on the ground and excited states. On the ground state these ex- 
citations lead to the so called delocalization 2 na order energy [2] 

5 2 del ~ ~ 2 F~2. o o = E o - E  . 
pr 
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On the excited state, such excitations are also possible. They will lead to some 
cross terms which will be analyzed in the Appendix and diagonal terms 

where R is a remainder triple summations where p or q = i or j ;  this term occurs 
because when p or q is equal to i or j,  there is only one excitation instead of two. 

/ ("  t~" ;)) e ~ d e l + R = ~  ~ . c A , ~ 2 / ~ ,  ' E ~ 
i j p ~ q  

Let us assume 

Then 

.o If" ;)_ ~oO__. (i')_ ~o~ +~ (;) _.oO 

~,~o tJ" ; t  -- ~ ' - -  t ; t - - ( ; t  + -  

~oO~j 
(14) 

Thus 

I'--t;" ;)]1 I.o~ § 

e 2 d e l + R  = Z Z e2* Z Z 
i j 

=ZZ 
p ~ q  

2Fp2* [1 - 

2Fp2, 

~o_~0(~.) ~ ~c~. 

+ Z 2  
p•q 

~_.oti" ) 

2G, 

(15) 

(16) 

(17) 

(:') If') Since E' is the barycenter of the single excitations, the quantity E' - E ~ 

(;) is small with respect to the denominator E ~ - E  ~ which represents a single 

excitation energy. Therefore, a limited development gives 
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Fig. 2. Evolution of the experimental and calculated transition energies S o -  $1 towards the first 
singlet excited state (2a), S O - S 2 towards the second singlet excited state (2b), S O - T 1 towards the first 
triplet excited state (2c). + ... + experimental values in vapor state, . - - .  experimental values in 
solution, x x E ~ zeroth order transition energies, O O E~" zeroth order transition energies 

(5 corrected by the singly excited determinants,  /x ~ E~ calculated transition energies after 
the full second order correction 

The normalization condition and the definition of E' [Eq. (8)] imply ~ ~ c2, = 1 

and E ' =  2 ~ c2*E~ . Therefore e~ del + R = eg del. 
i j 

This demonstration requires Eq. (13) to be valid. This is verified if H ~ for the 
ground state is the sum of monoelectronic hamiltonians, for instance in the 
Moller-Plesset definition of H ~ [9]; with such a definition the transition energies 
are simply differences between monoelectronic energies, and are therefore ad- 
ditive. With the Epstein-Nesbet definition of H ~ [6], Eq. (13) is only approximate. 

n 
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The practical consequence of this cancellation is that if e2 del has been already 
calculated for the second order ground state energy, through an n 2 summation, 
the calculation of the delocalization effects on the transition energy only requires 

2 the calculation of R, through a n~ x n summation and of the cross terms. The 
number of cross terms contributions is demonstrated in the Appendix to increase 
like n~ x n at most. The cancellation of common diagrams reduces the computa- 
tion time from n~ n 2 to n~ n. The same considerations might be developped for 
the 25 'a order correlation effects on ground state, resulting from the interaction 
with the doubly excited determinants, and on the excited state, resulting from its 
interaction with the triply excited determinants. 

3. Calculated Transition Energies 

We have studied the all-trans linear polyenes C2NH2N + 2 from N = 2 to N = 7: 
Most of experimental spectra have been obtained in liquid phase in solvants 
such as hexane or isooctane [10]. But for butadiene, hexatriene and octatetraene, 
spectra in gaseous phase have been given [11] showing a bathochromic solvant 
effect of 0.2~0.3 eV. 

In our calculations, all bond angles are taken equal to 120 ~ and the bond 
lengths are those calculated by Julg [12]. 

a) So - $1 Transitions Energies  

Table 1 gives the zeroth order transition energies E ~ i.e. the transition energies 
calculated after the diagonalization of the (~) excitonic matrix, E~ m the transition 
energies including the second order correction of the o- monoexcited configurations (;*/ 4) on the excited state, Et 2 the transition energies obtained after the full 

second order correction on both states, and E t the experimental transition energies 
(Et, vEt, s are obtained respectively in vapor phase and in solution). 

Figure 2a shows the evolutions of E ~ Et z'", E~ and the experimental (Et, v and 
E~,s) transition energies with N, the number of double bonds. 

The curve Et ~ parallels the experimental one, but lies several electronvolts 
too high. 

The curve E~ 'm runs also quite parallel to the experimental curves, the calcu- 
lated transition energies are always lower than the calculated (r0 excitonic transi- 
tion energies E ~ due to the negative effect of the (G) singly excited configurations. 

(;) The effect of the singly excited configurations is rather important in 

small polyenes as noticed by Herzenberg et al. [12], Dunning and Mc Koy [14] 
and Giessner and Pullman [15]. Denis and Malrieu [16] had demonstrated that 
this effect decreases as N-  1 when using the usual delocalized description. In our 
model, one notices only a small decrease of this correction (1.05-0.95) when N 
varies from 2-7 (Table 1). The value of this correction tends towards a non-zero 
constant. This difference between the delocalized and excitonic models is due to 
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Table 1. Experimental and calculated transition energies for H - ( C H = C H ) N - H  polyenes from N = 2 to 
N = 7  

N State Experimental E ~ E~"  EZt sl  s2 dl  d2 cs cd 
values 

2 S1 5.9 (5.7) 9.69 8.65 10.09 +0.39 - 1 . 3 8  +0.40 +0.57 +1.23 +0.23 
$2 13.69 12.34 
T1 3.20 5.99 5.99 6.98 +0.66 - 0 . 6 5  +0.96 +0.48 - 0 . 4 7  0 

S1 5 (4.75) 7.94 6.96 7.95 +0.75 - 1 . 7 6  +0.49 +0.60 +0.64 +0.27 
$2 10.99 9.99 
T1 2.60 4.81 4.81 5.65 +1.12 - 0 . 9 7  +1.05 +0.52 - 0 . 9 7  0 

S1 4.45(4.20) 7.15 6.18 6.59 +0.92 - 2 . 0 5  +0.54 +0.62 +0.12 +0.29 
$2  (5.84) 9.38 8.36 9.86 +0.70 - 2 . 0 7  +0.55 +0.62 +1.48 +0.10 
T1 2.20 4.30 4.30 4.84 +1.27 - 1 . 2 0  +1.09 +0.53 - 1 . 1 6  0 

S1 (3.75) 6,75 5.80 5.83 +0.99 - 2 . 2 2  +0.57 +0.63 - 0 . 2 5  +0.31 
$2 (5.27) 8.39 7.40 8.72 +0.84 - 2 . 1 5  +0.56 +0.63 +1.20 +0.17 
T I  4.06 4.06 4.40 +1.33 -1 .31  +1.10 - 1 . 5 4  - 1 . 3 2  0 

S1 (3.45) 6.63 5.58 5.36 +1.03 - 2 . 2 9  +0.58 +0.63 - 0 . 4 9  +0.31 
$2 7.77 6.81 7.79 +0.92 - 2 . 2 4  +0.57 +0.63 +0.85 +0.22 
T1 3,93 3.93 4.15 +1.35 - 1.37 +1.11 +0.55 - 1 . 4 2  0 

S1 (3.18) 6,40 5.45 5.04 +1.05 -2 .33  +0.59 +0.63 - 0 . 6 6  +0.31 
$2 7.35 6.40 7.08 +0.97 - 2 . 3 0  +0.59 +0.63 +0.52 +0.25 
T I  3.86 3.86 4.00 +1.37 -1 .41  +1.11 +0.56 - 1 . 4 8  0 

The experimental transition energies as those obtained in solution (values between brackets) and in 
vapor phase. 

E ~ = Zeroth order transition energies. (o*) 
E2t '" = Zeroth order transition energies corrected to the 2 no order by the singly excited con- 

a 
figurations. 

E~ z = 2 na order corrected transition energies. 
s 1 = diagonal 2 nd order correction due to the aq, + ap delocalization single excitations. 
s2 = diagonal 2 na order correction due to the ap+, a~ polarization single excitations. 
d 1 = diagonal 2 n~ order correction due to the a+,aq a+, ap double excitations. 
d2 = diagonal 2 nd order correction due to the ap, ap + ap, ap+ double excitations. 

cs and cd are the cross terms lor the single and double excitations. 

the non vanishing weight of the polarization local excitation / \|n*| in the excitonic 
\hi / 

model and will be discussed in details in a further publication [17]. 
Figure 3 gives the evolution of the second order correction due to the single 

excitations, the double excitations and the full second order correction. 
The effect of the single excitations on the transition energies decreases from a 

positive value for N = 2 ( + 0 . 2 3 )  to a negative value which tends to a constant 
for N > 7. This effect can be analyzed as follows: 

+ - The deloealization excitations aq ap(p r q) are all possible on the ground 
state determinant, while some of them are impossible when acting on the excited 
determinants. Since in the CNDO-PCILO hypotheses, the matrix elements 
are the same, the final diagonal correction is positive (see 1 st term of B 1/a and 
B 3/a of the Appendix). This correction tends to a nearly constant value for 
N > 5 (see Table 1). 
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Fig. 3. Evolution with N of the various second order corrections upon the transition energy. Correction 
due to the single excitations upon the first singlet S 1 x x, the second singlet $2 x - - -  x, the first 
triplet T 1 x ... x. Correction due to the double excitations upon the first singlet $1 �9 0,  the 
second singlet S z � 9  the first triplet T~ �9 ... � 9  Total second order correction upon the first 

singlet �9 � 9  the second singlet �9 - - - A ,  the first triplet �9 - . - �9  

The  po l a r i z a t i on  exci ta t ions  + av.a p give s t ronger  in te rac t ions  with the exci ted (qq') de te rminan t s  than  with  the g round- s t a t e  d e t e r m i n a n t  (2 na te rm of the contr i -  

bu t ion  B 3/a of Appendix)  a n d  their  d i agona l  e lement  is therefore negative. The 
va r ia t ion  of  this co r r ec t ion  is ra ther  i m p o r t a n t  bu t  tends to a constant .  

The  n o n - d i a g o n a l  co r rec t ions  (due to the in te rac t ion  of the same doub ly  
excited de t e rminan t s  wi th  two singly exci ted de te rminants )  are more  difficult 
to  analyze,  and  depend  on the sign changes  of  the exci tonic  wave function.  

The doub le  exci ta t ions  increase  the t r ans i t ion  energy by a quan t i ty  (curve C) 
which increases sl ightly f rom N = 2 to N - - 4 ,  and  remains  cons tan t  for N >__ 4. 
This  effect is ma in ly  due to  imposs ib i l i ty  of m a k i n g  an  exci ta t ion  § + aq, aq a[,. ap o n  a 

de t e rminan t  ~ if p or  q a re  equa l  to  i o r  j.  

The final full second o rde r  effect is posi t ive  for N < 3 then it becomes  negat ive  
a n d  tends  to  a cons t an t  va lue  which  is no t  yet  ob t a ined  for N = 7. This co r rec t ion  
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decreases the parallelism of the calculated and experimental transition energies 
curves, at least for the small values of N 1. 

One may compare E~, including the full 2 nd order correction, with E~ 'm which 
represent s the usual CI of singly excited states. One notices on Fig. 2a that for 
N = 2 to N = 4, E~ > EZt ,", while for N > 5, E 2 < E~". In the region 3 < N < 6 
(usual conjugated systems) the difference between the full 2 nd order corrected 
transition energy and the usual singly excited states CI is rather small, which may 
explain the success of this approximation.  

b) So - $2 Transition Energy 

The transition So - $2 toward the 2 nd singlet state is reported in Fig. 2b and 
Table 1. The results E 2 are not reported for N = 2 and 3 since a near degeneracy 
occurs between the excitonic wave function 7,o and the doubly excited deter- 

minants of the type i j . For  larger polyenes the degeneracy occurs with higher 

excited states. 
The calculated transition energies are too high, worse than for the S o - S  1 

transition, but the various effects are rather similar, except that the fully 2 nd 
order corrected transition energy E 2 is always close to Et ~ the excitonic transition 
energy, and larger than Eft  ~, the singly excited CI result. 

(7) As concerns the effect of the singly excited determinants , two factors 

compete: the second excited state is more polar than the first one, and thus (;*) interacts less with the determinants, but it lies higher in energy, and the 

denominator  energies are smaller. 
The single excitations lower more the S o -  $1 transition energy than the 

S o -  $2 transition energy. A detailed analysis shows that this is predominantly 
due to the cross terms and is difficult to analyze. The double excitations have a 
very small (~0.1  eV) and decreasing effect on the spacing between the two 
lowest singlet excited states. The full 2 nd order correction increases the spacing 
between these excited states. 

c) S 1 - T1 Energy Difference 

Figure 2c gives to evolution with N of the zeroth order and the second order 
transition energy is S O - T 1 . 

The singlet-triplet spacing is known experimentally for N =  2 to 4. The n 
excitonic treatment gives too large a spacing. This spacing is diminished under 

t;) the influence of the monoexcited states by an almost constant quantity 

1 All the results given here take into account the cancellation of common diagrams demonstrated 
in Section 2. This cancellation is only approximate (especially in the Epstein-Nesbet definition of H~ 
Calculations performed without taking benefit of these cancellations show that they are well satisfied 
for double excitations, but the "common" single excitations may introduce a correction up to 0.5 eV. 
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Fig. 4. Weights of the excitonic wave-function on the local excitations (in per cent). The number on 
line i and column j gives the weight on the i ~j* process. The upper part concerns the S 1 singlet excited 
state, the lower part concerns (numbers between parenthesis) the second singlet excited state $2, The 

symmetry of the problem implies (i,j) to be equal to (N - i + 1, N - j  + 1) 
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Table 2. Mean n population, (~) and ~ charges fluctuations (tr) in the double bonds loges for the 
excitonic description of the two first singlet excited states 

N State Loge 1 Loge 2 Loge 3 Loge 4 

tr ~ t~ ~ cr ~ ~r 

2 S 1 2 0.65 
S 2 2 0.71 

3 S 1 1.99 0.51 2.02 0.67 
S 2 2.22 0.5t 1.57 0.51 

4 S 1 1.98 0.38 2.01 0.61 
S 2 2.10 0.49 1.90 0.52 

5 $1 1.99 0.19 2 0.50 
$2 2.03 0.43 2.04 0.49 

6 $1 1.99 0.21 1.99 0.42 
S 2 2.01 0.36 2.04 0.49 

7 S 1 1.99 0.17 1.99 0.34 
S 2 2.00 0.21 2.02 0.45 

2.02 0,60 
1.87 0.44 

2.02 0.56 
1.95 0.41 

2.00 0.30 
2.00 0.43 

2.05 0.54 
1.95 0.32 

( ~  1 eV) since in the CNDO approximations, the triplet rc and triplet o- con- 
figurations do not interact [16]. The single excitations stabilize more the triplet 
excited state T~ than the ground state S ~ but this stabilization varies more slowly 
than the corresponding stabilization for the singlet excited state $1, so that the 
$ 1 -  T~ distance is reduced. The double excitations only give a small decrease 
(~_ 0.2 eV) in the S 1 - T1 spacing. 

4. Analysis of the Wave Functions 
a) Ionic versus Neutral Structures 

One may analyse the evolution of the relative weight of ionic (delocal!zation) 
versus neutral (polarization) structures in the zeroth-order excitonic wave- 
function. It appears from Fig. 4 that the first singlet is more neutral than the 
second one, nut the difference decreases when N increases. One may notice that 

�9 the weight of neutral structures in the first singlet excited state tends towards a 
constant about 46 %. This fact is very important because it introduces a qualitative 
difference with the usual deiocalized MO descriptions of excited states and will 
be demonstrated and discussed in detail elsewhere [17]. 

In the triplet states, the neutral structures have larger weight. This is mainly 

due to the fact that the triplet polarization configurations have lower energies 

 ti*) than the singlet polarization configurations, while the and have 

the same energy in the CNDO approximations. 

b) Localization of the Excitation on the Nuclear Skeleton 

Qualitatively, from Fig. 4, the first singlet excitations appears to be located 
on the center of the molecule (bond N/2 and N/2 + 1 if N is even (N + 1)/2 if N is 
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odd), the second excitations being more probable on the neighbour bonds (bonds 
number N / 2 - 1  and N/2 + 2 when N is even ( N -  1)/2 and (N + 3)/2 when N is 
odd). 

c) The Populations in the Bond-Loges and their Fluctuations 

Table 2 gives the n bond charges, i.e. the mean n populations or mean numbers 
of zc electrons per double bond in the two lowest singlet excited states. The lowest 
singlet state appears to be almost neutral, in agreement with the pairing theorem 
in the delocalized description. The fact that the mean population is almost 2.0 
does not mean that the polar charge transfer structures play no role. It simply 
means that the i~ j*  and j ~ i* excitations have almost equal weights. 

On the contrary the second singlet state implies significant displacement of 
the mean charges. The central bond(s) is (are) positive, the other bonds are 
negative. 

We also have reported in Table 2 the fluctuations of the number of n electrons 
per double-bond. For a wave-function 

define the number of electrons in bond k for ~(i*) one may 
\ ~  / 

using the operator n k, number of particles in loge k [19]. 
Then if~ k is the mean number of electrons in bond k 

Cij, Hi j* 
i j* 

The fluctuation of the number of electrons in bond k is given by 

i j* 

Since the ~j, differs from 2 only when i or j* = k, this fluctuation decreases for this 
type of wave function, as may be seen from Table 2 but they are larger than for 
the ground state. 

Conclusions 

We have considered the classical n excitonic wave function 

as a multiconfigurational zeroth order wave-function. This wave function has 
been perturbed under the influence of i) the other singly excited determinants 

(the 1(~,)configurations coupled with the 1(~*)configurations through dipole- 
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dipole interaction@ ii) the doubly excited determinants, which introduce polari- 
/ 

zation effects on the excited state, iii) the triply excited determinants, which 
introduce bond and interbond correlation effects on the excited state. 

A correct definition of/4 o allows, through an algebraic derivation of the various 
2 "a order corrections, to calculate only the changes of polarization, delocalization 
and correlation energies in the excited state with respect to the ground state, 
despite the multiconfigurational form of the zeroth order wave-function for the 
excited state, we have been able therefore to get the "cancellation of common 
diagrams in excitation energies" well established when the zeroth order wave- 
function for the excited state is the single determinantal Virtual Orbital ap- 
proximation. Although a very large number of determinants are taken into 
account, the calculation of 2 "a order corrected transition energies is very short, 
much shorter than when one perturbs a single configuration using delocalized 
MO's. For instance the calculation of 10 transition energies in C14H16 requires 
6m 3 seconds on an IBM 360-75 computer. This speed is obtained through both 
the complete localization of the MO's reducing the number and calculation 
time of non zero molecular integrals, and a careful choice of the perturbation 
procedure. It appears therefore that the use of localized MO's is very useful not 
only for the ground state energy and ground state properties calculation, but also 
for the excited states and excitation properties, for which the canonical delo- 
calized MO's are often presented as necessary. 

This PCILO method for excited states will be applied to some conceptual 
and numerical problems. In further publications [17], it will be shown that the 
single determinantal description of the excited state overestimates the delocali- 
zation of the excitation with respect to the excitonic treatment. The method will 
be applied to some conformational problems involving the excited states. 

Appendix 
Detailed 2 nd order energy corrections on the excited state. 
This Appendix gives the various types of interactions which appear in the 2 "0 

order energy correction on the excitonic wave-function 

i j 

We report successively the 2 "d order effects of the triply, doubly, singly, excited 
determinants and of the ground state determinant ~o. The following notations 
are used 

apq,  = (pp*, q'q*), apq = (pp*, qq) are charge-dipole interaction matrix 
elements. 

bpq = (pp*, qq*), is a dipole-dipole interaction matrix element 

A(qp*iil) =E'-E~ isatypicalenergydenominator. 
i,j, k and I belong to the subspace {n} of the rc MO's, 
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a belong to the complementary subspace, 

p and q are any MO's, belonging to {n} or not. 
s--0 or 1 according to the singlet or triplet character of the excited state. 

In the typical 2 "a order energy correction [Eq. (3)] we shall distinguish the 
cases where 4~ and 4~j are 1) both ionic, 2) ionic and neutral and 3) both neutral. 
In the following paragraphs we give in Table form the various non-zero inter- 
actions which occur under the CNDO-hypotheses when the MO's are fully 
localized, and the corresponding energy corrections, in a form which makes the 
programmation straightforward. In the Tables the doubly bordered columns 
represent diagonal interactions. 

A) Effect o f  the Triply Exci ted  Determinants 

]) ~I and ~s both ionic 

(';) 
(:') (5 t;) 
(~ * P* q*) 

P q 
0 0 0 

Due to the CNDO-PCILO hypothesis we only have diagonal terms: 

a= Z Y'4j* 
�9 j P 

bpp( l - (~ip - 
p P 

The 6's take into account the possible spin restrictions. 
2) ~I ionic and 4~ s neutral 
No triply excited determinant interact with ~i and 4~j in a such a case, due to 

the CNDO-PCILO hypothesis. 
3) 4~ and ~s both neutral 

ti;) 
(:') t2,, 
i* p* q* 1 " j* p* 
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a=~c~.I~(~ 262~j~(:* ~* ") (i* i..) (:.p..))] P qq +4 (1 - s )  b~p/A i Pp +b2p/A Pp ' 
i kp \q  P 

b = ~, 2 '  Cu*Cjj* ~" (2 - 5pi- (5,j)(i - s) bipbpjA 
i j p ,] 

Combining the corrections la  and 3a, and using the demonstration given in 
Part If, one might introduce explicitly the 2 "0 order correlation effects on the 
ground state minus some specific terms. 

B) Effect of the Doubly Excited Determinants 

1) (h i and (ha both ionic 

k~i  

( i ' 2  t'7 ~* " 

a =  ~ 2 ' c 2 .  ~' 2 ( 2 - 5 p i - a q , +  2~5piaoj(1-s))F[,2./A 
�9 j t p ~ q  

(:* ;)1 + ~ (2 - 6.~ - 6.j) (F,p, + a.j. - au~)2/a 
P 

C--~ ~i Zt  ~"  Cij*Ckj* (--1)(1 +aPJ(1-*))Fkp*Fip*/A 
�9 j k p k 

q- Fki,(Fii,--j- ao~--aik)/,d (:* ~ )  

d- Fik,(Fkk, n u akjg-- aki)/d k ' 

d= 2 2 '  2" ~"'Co*Ck,*2(1--s) FieFk,*/A 
i j k l 
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2) ~I  ionic, q~j neutral  

J. Langlet and J. P. Malrieu: 

q51 

�9 tj, r / . ~ ,  

I (:) (:) c =  y '  ~ ' c i j ,  c~j, Z" -2F~p*Fip* /A  * p* * j* i j L p j + ( -  1)s Fij*(FJJ~ + ajj, - aji)/A ] 

- f j i , (Fii ,  + % ,  - a O / A  j ' 

d =  F~ F/F~"Ci~,Ckk, 2 ( l - - s ) E j , ( F k k , + % , - - a k ~ ) / A  . 
i j k 

3) ~ i  and 4~s both  neutral  

tl;) 

(i*;)b 

a = Z ci], 2 ~ (2 - 6p, - 6qi) F2q,/A 
i k p~aq 

(;;)l + ~ 2(1 - s 6pi) (Fpp, + avi, - api)Z/A 
P 

b = 2 ~ '  Cu, Cjj, 2(1 - s) (Fii, + a i j ,  - -  aij) ( F j j .  d-  aji, - a j i ) / A  
i j 
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C) Effect of the Singly Excited Determinants which do Not Belong to S 

1) ~i and ~a both ionic 

(5 (2) 
b c 

t':) 2 a = ~. ~'  c2. ~ /A + Fj.../A , 

b = ~i 2 '  ~" cij*Cik*Fj*~*F.*k*/d + cij*ckj*fi.Fk./d �9 
�9 j k 

(5 
2) ~x ionic, ~a neutral 

(i*) If*) (~*)k~,,., 
ti*),~, (5~ t~)b ~ 

3) ~I and ~j both neutral ~~ J* 
j* 
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(;) (7") (;*) a = ~ c2. ~ F2/A + F~,,i,/A + 4(1 - s) b~SA , 
i 

b = 2 ~ '  Cu*C~j* ~ 4(1 - s) bi~bj~/A~.. 
i j a 

D) Effect of the Ground State Determinant 

a =  Z Z' Z" Z'"Clj*Ckt*Fij~FkI*/A(O) " 
i j k l 

One may see from these formulae that 
i) the diagonal corrections a should imply two summations over the ~ MO's 

and two summations over all MO's (i.e. a time proportional to 2 2 n~n ), but the 
introduction of the ground state corrections reduce them to summations of the 
type ~ Z 2 ~, involving n~n elements. 

i j k p 
ii) The cross-terms ( ~  ~ ~s) b, c, d only involve ~ ~, ~ ~, summations of the 

i j k p 
type ~ ~ ~ ~ involving n 3 n matrix elements. 

i j k p 
The total computation time of a 2 no order corrected transition energy is 

therefore proportional to n 3 n, while the 2 nd order corrected ground-state energy 
required a time proportional to n 2. One may distinguish two cases; 

i) The conjugated system involved in the zeroth order description of the 
excitation is kept constanL(n~ constant), n increasing with the number of sub- 
stituants. Then the computation time of the transition energy only increases 
like n. 

ii) The dimension of the conjugated system increases like n(n~= n/5 in 
conjugated hydrocarbons), and the computation time of the transition energy 
varies as n4/(5) a. 
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